Shaken, and stirred: oscillatory segmented flow for controlled size-evolution of colloidal nanomaterials.
نویسندگان
چکیده
We introduce oscillatory segmented flow as a compact microfluidic format that accommodates slow chemical reactions for the solution-phase processing of colloidal nanomaterials. The strategy allows the reaction progress to be monitored at a dynamic range of up to 80 decibels (i.e., residence times of up to one day, equivalent to 720-14,400 times the mixing time) from only one sensing location. A train of alternating gas bubbles and liquid reaction compartments (segmented flow) was initially formed, stopped and then subjected to a consistent back-and-forth motion. The oscillatory segmented flow was obtained by periodically manipulating the pressures at the device inlet and outlet via square wave signals generated by non-wetted solenoid valves. The readily implementable format significantly reduced the device footprint as compared with continuous segmented flow. We investigated mixing enhancement for varying liquid segment lengths, oscillation amplitudes and oscillation frequencies. The etching of gold nanorods served as a case study to illustrate the utility of the approach for dynamic characterization and precise control of colloidal nanomaterial size and shape for 5 h. Oscillatory segmented flows will be beneficial for a broad range of lab-on-a-chip applications that require long processing times.
منابع مشابه
Facile and economic method for preparation of nano-colloidal Silica with controlled size and stability
This study is focused on synthesis of nano-colloidal silica via alkaline water glass solution. Sodium ions of water glass were removed by cation exchanging in a resin column to obtain the silicic acid which was titrated to the solution of sodium silicate. Concentration of the colloidal silica and pH value of the solutions were controlled using different concentrations of alkaline sodium silicat...
متن کاملFluidic Oscillators’ Applications, Structures and Mechanisms – A Review
Enhancement of heat and mass transfer and decrease of energy dissipation are great necessities of the evolution of fluid flow devices. Utilizing oscillatory or pulsatile fluid flow for periodic disturbing of velocity and thermal boundary layers is one of the methods with exciting results. Passive methods of generating oscillatory flow are preferred to active methods because of simplicity, no ne...
متن کاملFacile and economic method for preparation of nano-colloidal Silica with controlled size and stability
This study is focused on synthesis of nano-colloidal silica via alkaline water glass solution. Sodium ions of water glass were removed by cation exchanging in a resin column to obtain the silicic acid which was titrated to the solution of sodium silicate. Concentration of the colloidal silica and pH value of the solutions were controlled using different concentrations of alkaline sodium silicat...
متن کاملA SEGMENTED REGRESSION MODEL FOR DESCRIPTION OF MICROBIAL GROWTH
A segmented regression model for the description of microbial growth has been suggested. The model is able to predict the exponential growth, logistic growth, logistic growth with a phase of decline, diauxic growth, microbial growth in synchronous cultures and the oscillatory growth
متن کاملEffect of Milling Process on Colloidal Stability, Color and Rheological Properties of Pistachio Paste
Pistachio paste is produced from ground roasted kernel. This study focused on the influence of the milling process on colloidal stability, rheological behavior and color of pistachio paste. The colloidal stability of pistachio paste samples increased with a reduction of particle size from 31.4 to 15.10µm. The Herschel-Bulkley model was found to be the best model to describe the flow behavior of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 14 13 شماره
صفحات -
تاریخ انتشار 2014